PII: S0957-4166(97)00284-X

Enantiospecific total synthesis of (+)-laevigatin

Subhash P. Chavan,* Vijay D. Dhondge, Sachindra S. Patil, Y. Tripura Subba Rao and Chitra A. Govande

Division of Organic Chemistry: Technology, National Chemical Laboratory, Pune 411 008, India

Abstract: The first enantiospecific, total synthesis of (+)-laevigatin from (+)-citronellal is described. © 1997 Published by Elsevier Science Ltd

Laevigatin 1, a naturally occurring terpene having an unusual skeleton, was isolated in optically active form from Eupatorium laevigatum¹ So far there have been only two syntheses of (\pm) -1 published,² but there has been no report of a synthesis of enantiomerically pure laevigatin. As a part of our interest in synthesis of Heritol, Heritonin and related compounds, two convenient and efficient methodologies to generate butenolides have been developed: (1) via osmylation of of β , γ -unsaturated esters³ and (2) direct oxidative conversion of β , γ -unsaturated acids to butenolides mediated by CAN at room temperature.⁴ Earlier^{2c} based on this strategy we have synthesized (\pm) -1.

a: HCHO, Piperdine acetate reflux b: Methylacetoacetate, MeOH, MeONa, reflux c: (Ph)₃PCH₃I, BuLi, THF 0°C

d: Sulfur, DMF reflux e: OsO4 (cat), Jones reagent, R.T. f: TFA, TFAA, 0°C g: ethylbromopropionate, Zn, H

h: OsO4, NMO, CH3CN i: TsOH, C6H6, reflux j: DIBAL-H, THF, -40°C

We now wish to report the first enantiospecific synthesis of (+)-1, using the above protocol for the synthesis of the butenolide and its conversion into naturally occurring laevigatin. The key intermediate, optically active tetralone 8 was obtained from commercially readily available citronellal 2. (+)-Citronellal 2 was converted to enone 4 following a reported procedure. Wittig methylenation of 4 gave triene 5 in good yield (80%). The aromatization of 5 was achieved by refluxing it in DMF in the presence of sulfur to furnish the aromatic compound 6 in 70% yield. One pot oxidative cleavage of the double bond via the corresponding diol to acid 7 was achieved in 84% yield. Cyclisation of acid 7 by trifluoroacetic anhydride furnished enantiomerically pure tetralone 8 (80%).

^{*} Corresponding author. Email: otech@ems.ncl.res.in

Having achieved the synthesis of chiral tetralone, the next task was the straightforward transformation of 8 to butenolide 11 by the protocol developed in this laboratory and its further conversion to (+)-laevigatin 1. Accordingly, the Reformatsky reaction³ on tetralone 8 afforded the β , γ -unsaturated ester 9 in 78% yield. Dihydroxylation of 9 furnished the corresponding diol 10 as a mixture of diastereoisomers in 80% yield. Since the stereochemistry at the newly created centres was of no consequence as far the synthesis of (+)-laevigatin is concerned as they would be destroyed in the subsequent steps, no attempt was made to separate the isomers. The acid catalyzed cyclization of the diol 10 with a catalytic amount of p-TsOH in refluxing benzene furnished the corresponding butenolide 11 in 73% yield. Reduction of butenolide 11 with DIBAL-H¹⁰ in THF at -40° C provided (+)-laevigatin 1 in 77% yield. The spectroscopic and physical properties of (+)-laevigatin thus obtained were found to be identical in all respects with the reported values for (+)-1 obtained from natural sources. m.p. 66° C, lit¹ $65-66^{\circ}$ C, specific rotation $[\alpha]_{D}=+89$ (c=2.3, CHCl₃). Lit.¹ $[\alpha]_{D}=+88$.

Thus, the first enantiospecific synthesis of (+)-laevigatin has been achieved from readily available (+)-citronellal. All reaction steps are very simple, mild and proceed with excellent yields and are easy to perform.

Acknowledgements

VDD, SSP, YTSR and CAG thank CSIR, New Delhi for award of fellowships.

References

- (a) Bohlmann. F. and Zdero, C. Chem. Ber. 1977, 110, 4687 (b) Filho, B.; Bacha, C. T. M.; Bauer, L.; de Silva, G. A. A. B. and Sequira, N. C. S. Tetrahedron Lett. 1978, 2653.
- (a) Kano, S.; Ebata, J. and Shibuya, S. Heterocycles, 1980, 14, 43. (b) Juo, R. R. and Herz, W., J. Org. Chem., 1985, 50, 700. (c) Chavan, S. P.; Rao. Y. T. S.; Govande, C. A. and Zubaidha P. K. IUPAC, Bangalore, 1994.
- 3. Chavan S. P.; Zubaidha, P. K. and Ayyangar, N. R. Tetrahedron Lett. 1992, 33, 4605.
- 4. Chavan S. P.; Zubaidha, P. K.; Govande, C. A. and Rao, Y. T. S. J. Chem. Soc. Chem. Commun., 1994, 1101.
- 5. Takano, S.; Inomata, K.; Samizu, K.; Tomita, S.; Yanase, M.; Suzuki, M.; Iwabuchi, Y.; Sugihara, T. and Ogasawara, K. Chem. Lett. 1989, 1283.
- 6. Sondheimer, F. and Mechnoulam, R. J. Am. Chem. Soc. 1957, 79, 5029.
- 7. Wynberg, J. J. Am. Chem. Soc., 1958, 80, 364.
- 8. James, R. H. and Weinreb, S. M. J. Org. Chem. 1993, 58, 4745.
- 9. Bourne, E. J.; Stacy, M.; Tattlow, J. C and Teddar, J. M. J. Chem. Soc. 1951, 718.
- 10. Kitagawa, I.; Tsujii, S.; Nishikawa, F. and Shibuya, H. Chem. Pharm. Bull. 1983, 31, 2639.

(Received in UK 11 June 1997)